Kings in multipartite tournaments

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the 3-kings and 4-kings in multipartite tournaments

Koh and Tan gave a sufficient condition for a 3-partite tournament to have at least one 3-king in [K.M. Koh, B.P. Tan, Kings in multipartite tournaments, Discrete Math. 147 (1995) 171–183, Theorem 2]. In Theorem 1 of this paper, we extend this result to n-partite tournaments, where n 3. In [K.M. Koh, B.P. Tan, Number of 4-kings in bipartite tournaments with no 3-kings, Discrete Math. 154 (1996)...

متن کامل

Kings in semicomplete multipartite digraphs

A digraph obtained by replacing each edge of a complete p-partite graph by an arc or a pair of mutually opposite arcs with the same end vertices is called a semicom-plete p-partite digraph, or just a semicomplete multipartite digraph. A semicomplete multipartite digraph with no cycle of length two is a multipartite tournament. In a digraph D, an r-king is a vertex q such that every vertex in D ...

متن کامل

k-kernels in multipartite tournaments

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively. A (k, l)-kernel N of D is a k-independent set of vertices (if u, v ∈ N then d(u, v), d(v, u) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists v ∈ N such that d(u, v) ≤ l). A k-kernel is a (k, k − 1)-kernel. An m-partite tournament is an orientation of an m-partite complete graph. In this pap...

متن کامل

Convex invariants in multipartite tournaments

In the study of convexity spaces, the most common convex invariants are based on notions of independence with respect to taking convex hulls. In [D.B. Parker, R.F. Westhoff and M.J. Wolf, Discuss. Math. Graph Theory 29 (2009), 51–69], H-independence, R-independence and convex independence were studied to prove results about the Helly number, Radon number and rank of a clone-free multipartite to...

متن کامل

Medians of Graphs and Kings of Tournaments*

We first prove that for any graph G with a positive vertex weight function w, there exists a graph H with a positive weight function w′ such that w(v) = w′(v) for all vertices v in G and whose w′-median is G. This is a generalization of a previous result for the case in which all weights are 1. The second result is that for any n-tournament T without transmitters, there exists an integer m ≤ 2n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1995

ISSN: 0012-365X

DOI: 10.1016/0012-365x(94)00169-j